Science 30	Unit D: Energy and the Environment
Lesson 11 - Nuclear Fusion	84 mins

Nuclear Waste

 There is no long term plan to dispose of the spent fuel bundles from a nuclear power plant This ionizing waste needed careful consideration even if it's only small amounts. 	 What is done is: First stored under water, for a few years to allow any unspent fuel to be used up, Then put in concrete canisters for the foreseeable future
---	---

Nuclear Fusion

nuclear fusion: a process in which two smaller nuclei join to form a larger nucleus, with the simultaneous release of energy.	Solar Fusion Reactions hydrogen to deuterium: ${}^{1}_{1}H + {}^{1}_{1}H \rightarrow {}^{0}_{+1}e + {}^{2}_{1}H$	
A Fusion Reaction Reactants Products	deuterium to helium-3: ${}^{2}_{1}H + {}^{1}_{1}H \rightarrow {}^{0}_{0}\gamma + {}^{3}_{2}He$	·γ···································
$ \begin{array}{c} $	helium-3 to helium-4: ${}_{2}^{3}He + {}_{2}^{3}He \rightarrow 2{}_{1}^{1}H + {}_{2}^{4}He$	o neutron
$^{2}_{1}H + ^{2}_{1}H \xrightarrow{0}_{0}\gamma + ^{1}_{0}n + ^{3}_{2}He$		

Controlling the Fusion Reaction

 Needs an EXTREME amount of heat and energy to START Needs an EXTREME amount of fuel to continue Temperatures needed to start on earth are too high for the energy out to outweigh the energy in 	 Development into "cold" fusion is a hot topic. If we would be able to achieve a type of fusion at temperatures never to temperatures in a furnace or fire we could have an extremely reliable source of energy.
---	---

Science 30 - Lesson 47 - Unit D - Nuclear Fusion

Name: ________Use the following information to answer the next question

Nuclide	Mass (10 ³ kg/mol)
bromine-91, ^{a1} Br	90.916 27
lanthanum-142, ¹⁴² La	141.899 71
strontium-94, ⁹⁴ ₃₅ Sr	93.915 29
xenon-140, ¹⁴⁰ ₅₄ Xe	139.918 43

1) Calculate the change in mass and corresponding energy change per mole of uranium-235 in the nuclear reactions given. Use masses given in the Science Data Booklet and those provided in the above table.

a)
$${}^{235}_{92}U + {}^{1}_{0}n \rightarrow 2{}^{1}_{0}n + {}^{94}_{38}Sr + {}^{140}_{54}Xe$$

b)
$${}^{235}_{92}U + {}^{1}_{0}n \rightarrow 3{}^{1}_{0}n + {}^{91}_{35}Br + {}^{142}_{57}La$$

2) Calculate the change in mass that would correspond to a release of 2.0×10^{14} J of energy.

3) For each fusion reaction given, complete the equation and identify the unknown product, ${}^{A}_{Z}X$

$${}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{1}_{0}n + {}^{A}_{Z}X \qquad \qquad {}^{14}_{7}N + {}^{1}_{1}H \rightarrow {}^{0}_{0}\gamma + {}^{A}_{Z}X$$

4) Calculate the energy change for each reaction in question 3. Determine whether the fusion reaction results in a release of energy. Support your answer.

5) Describe the conditions necessary for fusion to occur. Describe the challenges in attempting to create a fusion reactor that can sustain these conditions.

6) Is nuclear energy from the fission of uranium a renewable or non-renewable energy source? Provide a reason for your answer.

- 7) A possible reaction for fusion power involves a fusion between helium-3 and deuterium nuclei. The products of the reaction are helium-4 and a proton.
 - a) Present the process described as a balanced nuclear equation.
 - b) Calculate the change in mass and the corresponding energy change for the fusion between helium-3 and deuterium nuclei.