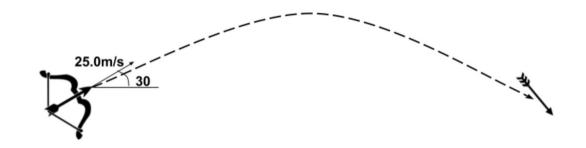

Kinematics in Two Dimensions

Chapter 2 Part 2

DO NOW!!!!


2) $v_x = 17.3 \text{ m/s}$

 $v_{y} = 10.0 \text{ m/s}$

$$\vec{v} = ??????$$
 $\vec{v} = |\vec{v}_{x}|^{2} + |\vec{v}_{y}|^{2}$
 $\vec{v} = |\vec{v}_{x}|^{2} + |\vec{v}_{y}|^{2}$

at 30.0° above the horizon

Example

What is Known?? In SI units????

1500 V_X

$$V_y = 25.0 \sin 30$$
 g = -9.8 lm/s^2
= 12.5 m/s
 $V_x = 25.0 \cos 30$
= 21.7 m/s

What formulas can be used?

$$v_f = v_i + at$$

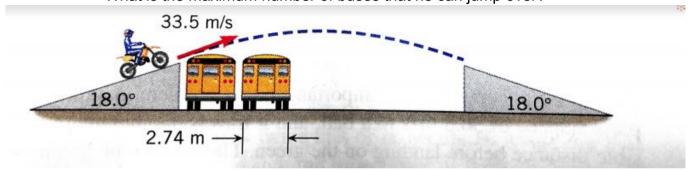
$$d = \frac{1}{2} (v_i + v_f) t$$

$$d = v_i t + \frac{1}{2} at^2$$

$$v_f^2 = v_i^2 + 2ac$$

 $y_f^2 = V_i^2 + 2ad$ $v_f = 0 m/s$ $d = 12.5^2 = 7.96 m$

What is the maximum height reached by the arrow?


How far does the arrow travel in the horizontal?
$$V_{ix} = 21.0 \text{ m/s} \left(\text{constant } \mathbf{v} \right) \quad t_{x} = 2.55 \text{ s}$$

$$d_{z} = V_{x} \cdot t = 21.7 \text{ m/s} \cdot 2.55 \text{ s}$$

 $d_z = V_x \cdot t = 21.7 \text{m/s} \cdot 2.55 \text{s}$ = $\sqrt{55.3} \text{m}$

need time (from vy) $\alpha = \Delta v = \frac{\sqrt{2} - v_{iy}}{\Delta t} - \Delta t = -\frac{v_{iy}}{\alpha} = -\frac{12.5 \text{m/s}}{-9.8 \text{lm/s}^2} = 1.27 \text{s} \text{ (to peak, double for full flight)}$

Example

What is the maximum number of buses that he can jump over?

What is Known?? In SI units????

$$V_{x} = 33.5 \cdot \sin 8$$

 $V_{x} = 33.5 \cdot \sin 8$
 $V_{x} = 33.5 \cdot \cos 8$
 $= 31.9 \text{ m/s}$

What formulas can be used?

$$v_f = v_i + at$$

$$d = \frac{1}{2} (v_i + v_f) t$$

$$d = v_i t + \frac{1}{2} at^2$$

$$v_f^2 = v_i^2 + 2ad$$

$$V_x = 31.9 \text{m/s}$$
 (contant velocity) = 1.06s (topeak)
weed time $2t = 2.12s$ (to landing)
 $d_x = vt = 31.9 \text{m/s} \cdot 2.12s$
 $d_x = 67.6 \text{m}$
 $d_x = 67.6 \text{m}$ = 24.6 buses...

$$47 = 67.6 \text{m}$$

 $47 = 67.6 \text{m}$
 2.74m/bus 24buses

$$t = \frac{dv}{a} = \frac{10.4 \text{ m/s}}{4}$$
 $(to peak)$
 $to peak)$
 $to peak)$

Practice

Pg. 82 in your workbook

Questions 1-8, 10, 11

CHALLENGE (VERY HARD)

A small can is hanging from the ceiling. A rifle is aimed directly at the can, as the figure illustrates. At the instant the gun is fired, the can is released. Ignoring air resistance: show that the bullet will always strike the can. regardless of the initial speed of the bullet. Assume that the bullet will strike the can before it hits the ground.