9PR2.7 Model, record and explain the operations of multiplication and division of polynomial expressions (limited to polynomials of degree less than or equal to 2) by monomials, concretely, pictorially and symbolically.

# Multiplying and Dividing Polynomials Pictorially and Algebraically

Polynomials can be multiplied and divided using algebra tiles or pencil and paper.

## Multiplying and Dividing Polynomials with Algebra Tiles

Multiplying polynomials using algebra tiles is similar to finding the area of a rectangle.

To multiply polynomials with algebra tiles, follow these steps:

- 1. Set up the grid.
- 2. Multiply the vertical tiles outside the grid by the horizontal tiles outside the grid.
- 3. Add the like terms inside the grid to identify the solution.

#### **Example**

Expand and simplify 2x(x+6). Write the polynomial that represents the area.

#### Solution

# Step 1 Set up the grid.



# Step 2 Multiply the edge of the vertical tile by the edge of the horizontal tile to get the area.



# **Step 3** Add the like terms inside the grid to identify the solution.



The answer is  $2x^2 + 12x$ .

Remember these rules for performing multiplication or division with negatives:

- Two positive or two negatives equal a positive or shaded value.
- A positive and a negative equal a negative or unshaded value.

## **Example**

Expand and simplify 3x(x-2) using algebra tiles.

#### Solution

#### Step 1

Set up the grid. Adding the dotted lines shows the shape of the tile that is the product of the two outside tiles.



# **Step 2**Multiply the edge of the vertical tile by the edge of the horizontal tile to get the area.



#### Step 3

Add the like terms inside the grid to identify the solution



$$3x(x-2) = 3x^2 - 6x$$

When multiplying polynomials using algebra tiles, the solution is found by determining the area of a rectangle. For example,  $4 \times 2$ .



When dividing polynomials using algebra tiles, the area of a rectangle and length of one side is given. The length of the second side needs to be determined. For example,  $8 \div 2$ .



To divide polynomials with algebra tiles, follow these steps:

- 1) Set up the multiplication grid with the divisor on the side.
- 2) Arrange the dividend into a rectangle.
- 3) Determine the quotient.

# **Example**

Use algebra tiles to find the quotient of the expression  $\frac{3x^2+9x}{3x}$  .

#### Solution

#### Step 1

Set up the grid with the divisor on the side.



#### Step 2

Arrange the dividend into the rectangle. There are a few rules for how the tiles are displayed in the rectangle.

• Only equal length sides may touch.

- Big squares cannot touch little squares.
- Little Squares must all be together.



Step 3

Determine the quotient.

The quotient is the side length of each of the tiles

$$(3x^2 + 9x) \div 3x = x + 3$$





# Example

Use algebra tiles to find the quotient of the expression  $(2x^2 - 4x) \div (2x)$ .

# Solution

# Step 1

Set up the grid with the divisor on the side.



Arrange the dividend into the rectangle. There are a few rules for how the tiles are displayed in the rectangle.

- Only equal length sides may touch.
- Big squares cannot touch little squares.
- Little Squares must all be together.



**Step 3**Determine the quotient. The quotient is the side length of each of the tiles.



$$(2x^2 - 4x) \div (2x) = (x - 2)$$

# **Multiplying and Dividing Polynomials Algebraically**

To multiply polynomials, apply the distributive property. Multiply the numerical coefficients together. Then, multiply the variables together by adding the exponents of the variables with the same base.

# **Example**

Expand and simplify  $3(2x^2-6x+4)$ .

#### Solution

To expand an expression means to multiply each term inside the brackets by the term outside the brackets.

#### Step 1

Distribute the term outside the brackets to each term inside the brackets.

$$(3)(2x^2) + (3)(-6x) + (3)(4)$$

Notice the addition signs are written between each group being multiplied. Minus six (-6) is written negative six (-6) in the expansion when applying the distributive property.

#### Step 2

Multiply each pair of terms. Multiply the coefficients. Add the exponents of like bases.

$$= (3 \times 2)(x^2) + (3 \times -6)(x) + (3)(4)$$

$$=6x^2-18x+12$$

When dividing a polynomial by a monomial, divide each term of the polynomial by the monomial.

### **Example**

Find the quotient of  $\frac{4x^3+8x^2-16x}{2x}$ 

#### **Solution**

#### Step 1

Break the polynomial into its terms. The polynomial is the expression with one or more terms.

$$4x^3$$
,  $8x^2$ ,  $-16x$ 

#### Step 2

Divide each term by the divisor. The divisor is 2x.

Divide the coefficients. Subtract the exponents of the powers with the same base.

$$= \frac{4x^3}{2x} + \frac{8x^2}{2x} + \frac{-16x}{2x}$$
$$= (4 \div 2)(x^{3-1}) + (8 \div 2)(x^{2-1}) - (16 \div 2)(x^{1-1})$$

# Step 3

Write the quotient, or answer.

$$=2x^2+4x-8$$