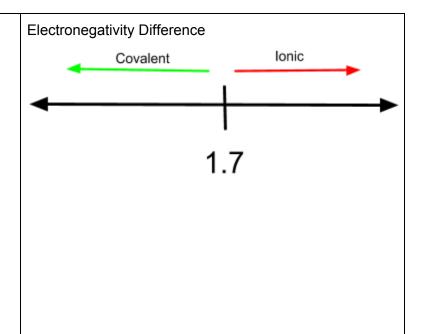
Chemistry 20	Unit 1
Lesson 2: Introductory Stereochemistry	84 mins

Electronegativity

- How hard atoms pull on e
- Determines the nature of chemical bonds
- Remember that Metal-Non-metal thing... this is why I said most of the time

KCI_(s) K (0.8) CI (3.2)


Difference in Electronegativity: 3.2 - 0.8 = 2.4

2.4 > 1.7 : Ionic

AIP_(s) AI (1.6) P (2.2)

Difference in Electronegativity: 2.2 - 1.6 = 0.6

0.6 < 1.7 ∴ covalent

Bond Polarity

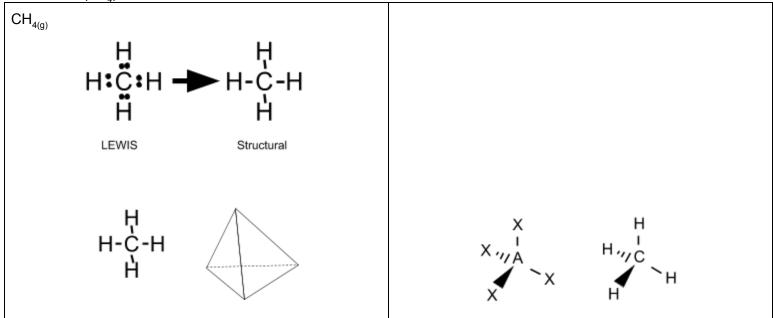
- If there is a difference in electronegativity than the electrons will be shared unevenly, creating a polar bond.

O=O 3.4 3.4	3.4 - 3.4 = 0.0 - Nonpolar covalent bond (e ⁻ shared evenly)
δ ⁺ δ ⁻ C ≡ O 2.6 3.4	3.4 - 2.6 = 0.8 - Polar covalent (e ⁻ shared unevenly)

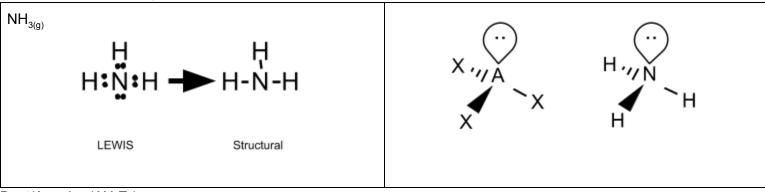
Stereochemical (3D) Diagrams

structural drawing attempting to show the molecule in 3D

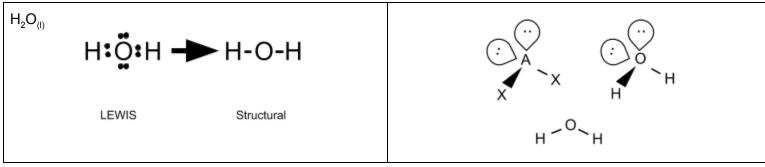
VSEPR Theory

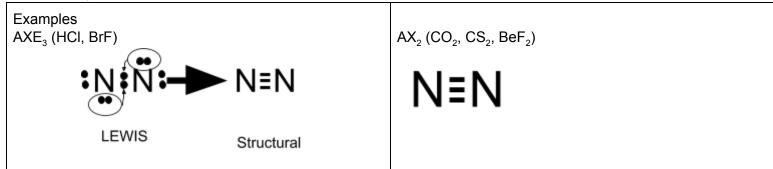

- Valence Shell Electron Pair Repulsion
- e push molecules into certain shapes

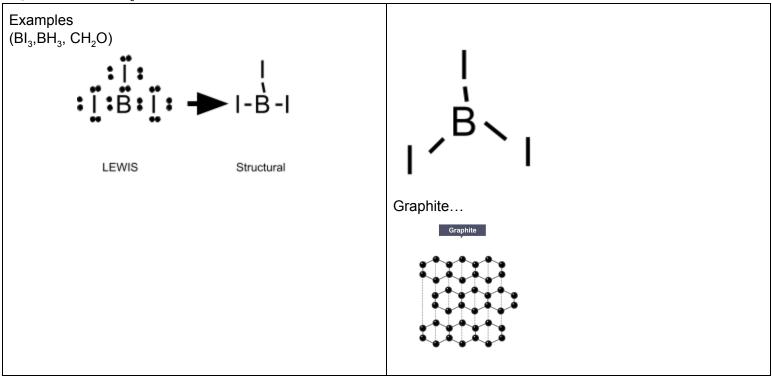
Symbols


- A Central Atom
- X Peripheral Atoms (surrounding)
- E Electron Pairs on central atom

Types


Tetrahedral (AX₄)


Trigonal Pyramidal (AX₃E)


Bent/Angular (AX₂E₂)

Linear (AXE₃, AX₂, AX)

Trigonal Planar (AX₃)

Extra Examples CH₃SH_(aq) - (Tetrahedron)

 $\mathsf{OOCCOO}^{2\text{-}}_{(\mathsf{aq})}$ - (Trigonal Planer)

 $\begin{array}{c} \text{Challenge} \\ \text{SF}_{\text{6(g)}} \end{array}$

Chemistry 20 - Stereochemistry Practice

Name:

Complete all of the following problems to the best of your ability. Ensure that you show all of your work as appropriate. Should you encounter difficulties, please refer to your notes or section 3.3 of your textbook.

Compound	Lewis Diagram	General Formula	Stereochemical (3-D) Diagram
Carbon dioxide			
Ammonia			
Ammonium ion			
Boron trifluoride			

Hydrogen cyanide		
cvanide		
Cultum		
Sulfur		
dichloride		
Sulfite ion		
Carbon		
disulfide		
CH CI		
CH ₂ Cl ₂		
Methanol,		
CH ₃ OH _(I)		
1	1	